How algorithms mislead the human brain in social media - Part 2

data science algorithm social media

How algorithms mislead the human brain in social media - Part 2

If you haven't read part 1 of this article yet, be sure to check it out here.

Echo Chambers

Most of us do not believe we follow the herd. But our confirmation bias leads us to follow others who are like us, a dynamic that is sometimes referred to as homophily—a tendency for like-minded people to connect with one another. Social media amplifies homophily by allowing users to alter their social network structures through following, unfriending, and so on. The result is that people become segregated into large, dense and increasingly misinformed communities commonly described as echo chambers.

At OSoMe, we explored the emergence of online echo chambers through another simulation, EchoDemo. In this model, each agent has a political opinion represented by a number ranging from −1 (say, liberal) to +1 (conservative). These inclinations are reflected in agents' posts. Agents are also influenced by the opinions they see in their news feeds, and they can unfollow users with dissimilar opinions. Starting with random initial networks and opinions, we found that the combination of social influence and unfollowing greatly accelerates the formation of polarized and segregated communities.

Indeed, the political echo chambers on Twitter are so extreme that individual users' political leanings can be predicted with high accuracy: you have the same opinions as the majority of your connections. This chambered structure efficiently spreads information within a community while insulating that community from other groups. In 2014 our research group was targeted by a disinformation campaign claiming that we were part of a politically motivated effort to suppress free speech. This false charge spread virally mostly in the conservative echo chamber, whereas debunking articles by fact-checkers were found mainly in the liberal community. Sadly, such segregation of fake news items from their fact-check reports is the norm.

Social media can also increase our negativity. In a recent laboratory study, Robert Jagiello, also at Warwick, found that socially shared information not only bolsters our biases but also becomes more resilient to correction. He investigated how information is passed from person to person in a so-called social diffusion chain. In the experiment, the first person in the chain read a set of articles about either nuclear power or food additives. The articles were designed to be balanced, containing as much positive information (for example, about less carbon pollution or longer-lasting food) as negative information (such as risk of meltdown or possible harm to health).

The first person in the social diffusion chain told the next person about the articles, the second told the third, and so on. We observed an overall increase in the amount of negative information as it passed along the chain—known as the social amplification of risk. Moreover, work by Danielle J. Navarro and her colleagues at the University of New South Wales in Australia found that information in social diffusion chains is most susceptible to distortion by individuals with the most extreme biases.

Even worse, social diffusion also makes negative information more “sticky.” When Jagiello subsequently exposed people in the social diffusion chains to the original, balanced information—that is, the news that the first person in the chain had seen—the balanced information did little to reduce individuals' negative attitudes. The information that had passed through people not only had become more negative but also was more resistant to updating.

2015 study by OSoMe researchers Emilio Ferrara and Zeyao Yang analyzed empirical data about such “emotional contagion” on Twitter and found that people overexposed to negative content tend to then share negative posts, whereas those overexposed to positive content tend to share more positive posts. Because negative content spreads faster than positive content, it is easy to manipulate emotions by creating narratives that trigger negative responses such as fear and anxiety. Ferrara, now at the University of Southern California, and his colleagues at the Bruno Kessler Foundation in Italy have shown that during Spain's 2017 referendum on Catalan independence, social bots were leveraged to retweet violent and inflammatory narratives, increasing their exposure and exacerbating social conflict.

Rise of the Bots

Information quality is further impaired by social bots, which can exploit all our cognitive loopholes. Bots are easy to create. Social media platforms provide so-called application programming interfaces that make it fairly trivial for a single actor to set up and control thousands of bots. But amplifying a message, even with just a few early upvotes by bots on social media platforms such as Reddit, can have a huge impact on the subsequent popularity of a post.

At OSoMe, we have developed machine-learning algorithms to detect social bots. One of these, Botometer, is a public tool that extracts 1,200 features from a given Twitter account to characterize its profile, friends, social network structure, temporal activity patterns, language and other features. The program compares these characteristics with those of tens of thousands of previously identified bots to give the Twitter account a score for its likely use of automation.

In 2017 we estimated that up to 15 percent of active Twitter accounts were bots—and that they had played a key role in the spread of misinformation during the 2016 U.S. election period. Within seconds of a fake news article being posted—such as one claiming the Clinton campaign was involved in occult rituals—it would be tweeted by many bots, and humans, beguiled by the apparent popularity of the content, would retweet it.

Bots also influence us by pretending to represent people from our in-group. A bot only has to follow, like and retweet someone in an online community to quickly infiltrate it. OSoMe researcher Xiaodan Lou developed another model in which some of the agents are bots that infiltrate a social network and share deceptively engaging low-quality content—think of clickbait. One parameter in the model describes the probability that an authentic agent will follow bots—which, for the purposes of this model, we define as agents that generate memes of zero quality and retweet only one another. Our simulations show that these bots can effectively suppress the entire ecosystem's information quality by infiltrating only a small fraction of the network. Bots can also accelerate the formation of echo chambers by suggesting other inauthentic accounts to be followed, a technique known as creating “follow trains.”

Some manipulators play both sides of a divide through separate fake news sites and bots, driving political polarization or monetization by ads. At OSoMe, we recently uncovered a network of inauthentic accounts on Twitter that were all coordinated by the same entity. Some pretended to be pro-Trump supporters of the Make America Great Again campaign, whereas others posed as Trump “resisters”; all asked for political donations. Such operations amplify content that preys on confirmation biases and accelerate the formation of polarized echo chambers.

Curbing Online Manipulation

Understanding our cognitive biases and how algorithms and bots exploit them allows us to better guard against manipulation. OSoMe has produced a number of tools to help people understand their own vulnerabilities, as well as the weaknesses of social media platforms. One is a mobile app called Fakey that helps users learn how to spot misinformation. The game simulates a social media news feed, showing actual articles from low- and high-credibility sources. Users must decide what they can or should not share and what to fact-check. Analysis of data from Fakey confirms the prevalence of online social herding: users are more likely to share low-credibility articles when they believe that many other people have shared them.

Another program available to the public, called Hoaxy, shows how any extant meme spreads through Twitter. In this visualization, nodes represent actual Twitter accounts, and links depict how retweets, quotes, mentions and replies propagate the meme from account to account. Each node has a color representing its score from Botometer, which allows users to see the scale at which bots amplify misinformation. These tools have been used by investigative journalists to uncover the roots of misinformation campaigns, such as one pushing the “pizzagate” conspiracy in the U.S. They also helped to detect bot-driven voter-suppression efforts during the 2018 U.S. midterm election. Manipulation is getting harder to spot, however, as machine-learning algorithms become better at emulating human behavior.

Apart from spreading fake news, misinformation campaigns can also divert attention from other, more serious problems. To combat such manipulation, we have recently developed a software tool called BotSlayer. It extracts hashtags, links, accounts and other features that co-occur in tweets about topics a user wishes to study. For each entity, BotSlayer tracks the tweets, the accounts posting them and their bot scores to flag entities that are trending and probably being amplified by bots or coordinated accounts. The goal is to enable reporters, civil-society organizations and political candidates to spot and track inauthentic influence campaigns in real time.

These programmatic tools are important aids, but institutional changes are also necessary to curb the proliferation of fake news. Education can help, although it is unlikely to encompass all the topics on which people are misled. Some governments and social media platforms are also trying to clamp down on online manipulation and fake news. But who decides what is fake or manipulative and what is not? Information can come with warning labels such as the ones Facebook and Twitter have started providing, but can the people who apply those labels be trusted? The risk that such measures could deliberately or inadvertently suppress free speech, which is vital for robust democracies, is real. The dominance of social media platforms with global reach and close ties with governments further complicates the possibilities.

One of the best ideas may be to make it more difficult to create and share low-quality information. This could involve adding friction by forcing people to pay to share or receive information. Payment could be in the form of time, mental work such as puzzles, or microscopic fees for subscriptions or usage. Automated posting should be treated like advertising. Some platforms are already using friction in the form of CAPTCHAs and phone confirmation to access accounts. Twitter has placed limits on automated posting. These efforts could be expanded to gradually shift online sharing incentives toward information that is valuable to consumers.

Free communication is not free. By decreasing the cost of information, we have decreased its value and invited its adulteration. To restore the health of our information ecosystem, we must understand the vulnerabilities of our overwhelmed minds and how the economics of information can be leveraged to protect us from being misled.

Authors: Filippo Menczer

Source: Scientific American